Did you know that you can do a Löwdin orthogonalization by a singular value decomposition? Usually, when I hear Löwdin orthogonalization, I think of some weird S1/2 matrix, which scares me and I tend to stay away from it... But this pdf from the University of Oregon claims that you can do it in a different way. And it seems to work.
Say you have a matrix A and you want an orthogonal matrix that resembles it as closely as possible. What do you do? First you do a singular value decomposition of A:
Here U and V are orthogonal matrices and Λ is a diagonal matrix. We can now construct
which is an orthogonal matrix, since U and V are both orthogonal matrices. But even more, A' is the orthogonal matrix that best resembles A in the sense that for all orthogonal matrices Q it minimizes the distance with respect to the Frobenius norm
That is all you have to do.
Preventing misuse of chemistry cloud labs by bad actors
-
Cloud labs promise to significantly accelerate synthesis and testing by
lowering cost and technology barriers - for both good and bad actors.
Potential s...
2 weeks ago
No comments:
Post a Comment